# Need urgent help with Advanced Maths assignment. Please see attachment for typed questions. 1. For each of the statements below determine whether it is true or false, providing reasons for your answe

### When you have no idea what to do with your written assignments, use a reliable paper writing service. Now you don’t need to worry about the deadlines, grades, or absence of ideas. Place an order on our site to get original papers for a low price.

Order a Similar Paper Order a Different Paper

Need urgent help with Advanced Maths assignment. Please see attachment for typed questions.

1. For each of the statements below determine whether it is true or false, providing reasons for your answer.

Need urgent help with Advanced Maths assignment. Please see attachment for the typed questions.

For each of the statements below determine whether it is true or false, providing reasons for your answer.

(a) For the real line R with the standard topology and its subset Q of all rational numbers we have Cl(Q) = R. [2 marks]

(b) For the real line R with the standard topology and its subset Q of all rational numbers we have ∂(Q) = R. [2 marks]

(c) Singleton sets always closed in Hausdorff spaces. [2 marks]

2. Let T = {(a,∞) : a ∈ [−∞,∞]}. (Note: when a = −∞ we have (a,∞) = R, while if a = ∞, then (a,∞) = ∅.)

(a) Show that T is a topology on R. [5 marks]

(b) Carefully explain whether T is Hausdorff or not. [3 marks]

3. Let X be a topological space and let K1,K2, . . . ,Km be compact subsets of X. Show that K = K1 ∪ K2 ∪ . . . ∪ Km is compact, too. [5 marks]

4. Let X be a topological space. Prove that Int(A ∩ B) = Int(A) ∩ Int(B) for all subsets A and B of X. [8 marks]

5. Let (X, T ) and (Y, S) be two topological spaces and f, g : X → Y be two continuous maps. Show that, if (Y, S) is Hausdorff, the set Υ = {x ∈ X : f(x) ̸= g(x)} is open. [5 marks]

6. Let (X, T ) be a Hausdorff topological space and let K1 ⊇ K2 ⊇ . . . ⊇ Kn ⊇ . . .be an infinite sequence of non-empty compact subsets of X. Show that Kn ̸= ∅. i.e. there exists a point x ∈ X such that x ∈ Kn for all n ≥ 1. [8 marks]

### Get help with your complex tasks from our writing experts. Kindly click on ORDER NOW to receive an A++ paper from our masters- and PhD writers.

Get a 15% discount on your order using the following coupon code SAVE15

Order a Similar Paper Order a Different Paper